The University of Jordan

School of Engineering
MechanicalEngineering Department
Engineering Drawing \mathcal{L} Descriptive Geometry (0904131)
Summer 2022/2023

Practice to AUTOCAD

2D Drawing, 3D Modeling

Prepared by
Eng. Salam Al-Majali
Eng. Reem Al-Daraien

Introduction to 2D Drawing

——つっб．

1．Introduction to the software worksheet．
2．Drawing Limits：Metric and Imperial．
3．Zoom $Q^{\text {and Pan }}$ 新．
4．Snap（F9）
5．Line Line and Polyline Polline Commands：Ortho．（F8）Absolute，Relative，and Polar Coordinates．
6．Erase \mathbb{L}^{2} and Move ${ }^{+{ }^{+}+}$Commands．

Absolute Coordinates

Ortho．Mode

Relative Coordinates

Polar Coordinates

Draw the following exercises. Dimensions are in millimeters.

Ex. 1

Ex. 2

Ex. 3

Ex. 4

Ex. 5

Ex. 6

Circles

Circle, Radius

Circle, Diameter

3-Point

Tan, Tan, Radius

Tan,Tan, Tan

Introduction to 2D Drawing in AutoCAD
 วஓも
 Object Snap
 F(3),

1. Using the absolute coordinates, draw a 4 " square with lower left corner at (1.5, 2.5).
2. Draw a 1 " radius circle with a center at $(3.5,4.5)$.
3. Draw four circles centered at $(2,3),(5,3),(5,6)$ and $(2,6)$ with 0.5 radius.
4. Draw a point at $(6,4.5)$.
5. Use Object Snap to draw line segments through 18 Points using the following modes:

1	Center	10	Tangent
2	Quadrant	11	Midpoint between Quadrant and Center
3	Midpoint	12	Intersection
4	End	13	Apparent Intersection of Lines (1-2) and (6-7)
5	End	14	Parallel to line $(9-10)$, distance $=2.5$
6	Midpoint	15	Node (0.5,0.5)
7	Tangent	16	From the upper right corner at $(0.25,-0.5)$
8	Center	17	Extension of arc by (0.25)
9	Perpendicular	18	Near any point on top line

Introduction to 2D Drawing in AutoCAD
 วஓб
 Modify Commands

Basic Modify Commands: ${ }^{\circ}{ }^{\circ} \mathrm{Copy}$, Δ^{4} Mirror, ${ }^{\square}$ Scale, $\circlearrowright_{\text {Rotate, }}$ 气 Offset, ${ }^{-\cdots}$ Trim,
 Properties, and Match Properties.

Mirror Line

Origin

Scale: 2:1

Origin

Locations to Trim

Ex. 1

Ex. 2

Prepared by Eng. Salam Al-Majali and Eng. Reem Daraien

Note: Use Object Snap to Tangent
Tangent to draw the Tangent Line shown in the following exercises.

Ex. 3

Ex. 4

Ex. 5

Ex. 6

Ex. 7

Ex. 8

Ex. 9

Ex. 10

Ex. 11

Ex. 12

Rectangle and Polygon Commands

1. Rectangle

2. Polygons:

a. Center, Radius: Inscribed and circumscribed about the circle.
b. Edge.

Ex. 1

Ex. 2

Arc Commands

\longrightarrow วっб

(a)

(d)

e)

(f)

Ex. 1

Ex. 2: Clamp of Laundry Machine

Ellipse Commands

Ellipse (Center, Radius)

Ellipse (Axis, End)

Elliptical Arc

Ex. 2: Radar Station

Ex. 3: Toy Aeroplane

Ex. 4

Array

Associative and Explode

\circ_{0} Associative
$\partial \supset 6$

\square \square

\square
\square
\square

\square

Rectangular Array

Polar Array

Path Array

Draw the following patterns in exercise from (1) to (8) using Polar Array Command.


```
Ex. 1
```


Ex. 2

Join, Region, Boundary, Hatch, and Area
 วஓ๐

Case A:

1. Use the Polyline command to draw the outline of the given layout.
2. Use the Offset command to draw the inner wall. (Offset Distance $=3$).
3. Hatch the area as shown in the Figure. (Type: ANSI31, Scale: 2).
4. Find the Area and the Perimeter of the hatched zone.

> Area $=$
> Perimeter $=$
5. Use the Text command to insert the Area and the Perimeter values on the screen.
6. Put all Dimensions on the Figure.

Case B:

1. Use the Line command to draw the outlines of the given layout.
2. Use Join or Boundary commands to turn the outlines into one.
3. Use the Offset command for the inner wall. (Offset Distance $=3$).
4. Use (Add and Subtract Area) command to find the Area of the inner wall.

> Add Area =
> Subtract Area =
5. Use the Text command to insert the Area and the Perimeter values on the screen.
6. Put all dimensions on the Figure.

Draw the following exercises, then find the area of the hatched zone.

Ex. 1

Ex. 2

Block

1. Draw the following "Door", create a block, and name it "Door".

2. Insert the "Door" block in the proper places as shown in the given layout. Scale: 10:1

Texts, Dimensions and Leaders

-

Dimensions

Leaders

Dimensioning Rules

- วつも

A. Dimension Placement

- Place dimensions on the most descriptive views.
- Take dimensions from visible lines not from hidden lines.
- Organize and align dimensions for ease of reading.
- The dimensions are normally positioned to maintain a minimum of $3 / 8$ " $(9.52 \mathrm{~mm})$ open space around the object.
- Do not repeat dimensions.
- Dimensions should not cross other lines (unless necessary).
- Extension lines may cross other extension lines or object lines if necessary.
- Arrowheads are long and narrow (3 to 1 ratio).
- Do not place dimensions within views (unless necessary).
- Give an overall dimension and omit one of the chain dimensions.
- Shorter dimensions are placed inside longer ones.
- Angles may be dimensioned either by coordinates or angular measurements in degrees.
- Place angular dimensions outside the angle.
- Dimension cylinders in their rectangualr views with diameter.

B. Dimensioning for Holes

- Dimension holes in the circular view.

C. Dimensioning for Fillets, Rounds, and Arcs

- Rounds are dimensioned either by a leader pointing toward the center of the arc or the arrow may be placed inside (if space permits).

- A very slightly rounded corners may be denoted by: Break Corner.
- Fillets (inside rounded corners) are dimensioned by the same rules as rounds.
- If all fillets and rounds haveequal radii, the note "All Fillets and Rounds 1.0R" may be used instead of dimensioning each sperately.
- $\underline{\text { Arcs }}$ are dimensioned with a radius. Small arcs are dimensioned as they were fillets and rounds.

Layers

$\partial \sigma$

1. Create six layers as indicated in the table below with different colors.
2. Put all dimensions.
3. Find the area of the hatched zone and insert its value as a text on the screen.

Layer	Name	Line Type	Line Weight
1	Outlines	Continuous	0.53
2	Centerlines	Center	0.35
3	Hidden Lines	Hidden	0.40
4	Hatching	Continuous	0.30
5	Dimensions	Continuous	0.30
6	Text	Continuous	Default

Ex. 1

Ex. 2

Ex. 3

Layout Plot and Publish

วっб
In reference to the previous exercise (Ex. 1); Hook,

1. Create a new Page Setup and name it "Hook".
2. Change the following settings:
a. Printer: Your current Windows system printer or choose DWF to PDF.pc3.
b. Paper Size: ISO A3 $(420 \times 297 \mathrm{~mm})$.
c. Plot area: Window or Layout.
d. \quad Plot scale $=1: 1$.
e. Orientation: Portrait.
3. Use the Plot command.
4. If the Plot command is not used, tab to "Layout" and repeat the above steps.
5. Use Viewport command and choose ($\mathbf{1}$ viewport) to draw the required view.
6. Use Publish command to create the layout as a Pdf file.

Engineering Applications

Gas-discharge

Past Exam (1)

\qquad

1. Draw the following Figure using the appropriate layers.
2. Hatch the zone as shown in the Figure.
3. Find the area of the hatched zone.
4. Copy the Figure and make it as a block.
5. Put all dimensions on the original drawing.
6. Insert the block with a scale (2) and a rotational angle (30°).

Past Exam (2)

1. Draw the following Figure using the appropriate layers.
2. Hatch the zone as shown in the Figure.
3. Find the area of the hatched zone.
4. Copy the Figure and make it as a block.
5. Put all dimensions on the original drawing.
6. Insert the block with a scale (0.5) and a rotational angle $\left(75^{\circ}\right)$.

Past Exam（3）

－つった
1．Draw the following Figure using the appropriate layers．
2．Hatch the zone as shown in the Figure．
3．Find the area of the hatched zone．
4．Copy the Figure and make it as a block．
5．Put all dimensions on the original drawing．
6．Insert the block with a scale（ 0.75 ）and a rotational angle $\left(30^{\circ}\right)$ ．

Past Exam（4）

－つった
1．Draw the following Figure using the appropriate layers．
2．Hatch the zone as shown in the Figure．
3．Find the area of the hatched zone．
4．Copy the Figure and make it as a block．
5．Put all dimensions on the original drawing．
6．Insert the block with a scale（0．5）and a rotational angle $\left(60^{\circ}\right)$ ．

Past Exam (5)

1. Draw the following Figure using the appropriate layers.
2. Find the area of the hatched zone.
3. Copy the Figure and make it as a block.
4. Put all dimensions on the original drawing.
5. Insert the block with a scale (0.6) and a rotational angle $\left(80^{\circ}\right)$.

Past Exam (6)

1. Draw the following Figure using the appropriate layers.
2. Hatch the zone as shown in the Figure.
3. Find the area of the hatched zone.
4. Create the block and insert it as indicated in the figure.
5. Put all dimensions on the original drawing.

Array Pattern

Solids and Universal Coordinates System

Using the solids in 3D Modeling worksheet to draw the following.

Basic Drawing of 3D Solids

Ex. 1

Ex. 3

Ex. 6
Ex. 7

Ex. 8

Creating Solids using Presspull

Ex. 1

Ex. 2

Ex. 3

Ex. 4

Ex. 5

Ex. 6

Ex. 7

Ex. 8

Solids with 3D Mirror $\%$, Fillet \square, Chamfer \triangle, and Slice os

Ex. 1

Ex. 2

Ex. 3 Consider each grid equals 10 units.

Ex. 4

Revolve, Sweep, and Loft Commands

Revolve

$$
\begin{gathered}
A \\
B \\
B
\end{gathered}
$$

Sweep

Loft

Ex. 1

Ex. 2

Sectioning and Hatching

Draw the following 3D solid, make a copy of the object then make a full sectional front view.

Ex. 1

Ex. 2

Isometric Drawing

For the given views, construct a 3D-Solid for each of the following exercises.

Ex. 1

Ex. 2

Front View

Right Side View

Ex. 3

Left Side

Front View

Ex. 4

Top View

Front View

Ex. 5

Front View

Right Side View Ex. 6

Top View

Front View

Past Exam (1)

Problem (1): Draw the following 3D solid

Use one layer for each of the following: (3D solid, Hatch line, Text, and Dimension lines).
a. Write your Name, Reg. No, and Department.
b. Make a slice to obtain the full front sectional view (on a copy of the Figure), keep and hatch the back.
c. Add all dimensions as shown in the Figure.

Past Exam (2)

Problem (1): Draw the following 3D solid

Use one layer for each of the following: (3D solid, Hatch line, Text, and Dimension lines).
a. Write your Name, Reg. No, and Department.
b. Make a slice to obtain the full front sectional view at $\mathbf{P}-\mathbf{Q}$ (on a copy of the Figure), keep and hatch the back.
c. Add all dimensions as shown in the Figure.

Past Exam (3)

Problem (1): Draw the following 3D solid

Use one layer for each of the following: (3D solid, Hatch line, Text, and Dimension lines).
a. Write your Name, Reg. No, and Department.
b. Make a slice to obtain the full front sectional view at $\mathbf{P Q}$ (on a copy of the Figure), keep and hatch the back.
c. Add all dimensions as shown in the Figure.

Past Exam (4)

Problem (1): Draw the following 3D solid

Use one layer for each of the following: (3D solid, Hatch line, Text, and Dimension lines).
a. Write your Name, Reg. No, and Department.
b. Make a slice to obtain the full front sectional view (on a copy of the Figure), keep and hatch the back.
c. Add all dimensions as shown in the Figure.

Past Exam (5)

Problem (1): Draw the following 3D solid

Use one layer for each of the following: (3D solid, Hatch line, Text, and Dimension lines).
a. Write your Name, Reg. No, and Department.
b. Make a slice to obtain the full front sectional view at $\mathbf{P}-\mathbf{Q}$ (on a copy of the Figure), keep and hatch the back.
c. Add all dimensions as shown in the Figure.

Past Exam (6)

Problem (1): Draw the following 3D solid

Use one layer for each of the following: (3D solid, Hatch line, Text, and Dimension lines).
a. Write your Name, Reg. No, and Department.
b. Make a slice to obtain the full front sectional view at M-N (on a copy of the Figure), keep and hatch the back.
c. Add all dimensions as shown in the Figure.

Isometric Drawing

Past Exams

Ex. 1: For the given front and right views, construct a 3D-Sofid.

Ex. 2: For the given front and right views, construct a 3D-Sofid.

Ex. 3: For the given views, construct a 3D-Sofid.

Top View

Front View

Right Side View

Top View

Front View

Right Side View

Ex. 5: For the given views, construct a 3D-Solid.

Top View

Front View

Right Side View

Ex. 6: For the given views, construct a 3D-Solid.

Top View

Front View

Right Side View

